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Abstract—This research paper explores the use of a single LED
transmitter paired with an intelligent mirror array for power-
based visible light positioning (VLP) algorithms in a confined
space. The study compares the performance of various algorithms
in scenarios where the line-of-sight (LoS) path is obstructed,
leaving only non-line-of-sight (NLoS) power available for location
estimation. To localize the receiver with just one LED transmitter,
we conducted multiple measurements at the investigation point
using various intelligent reflecting surface (IRS) orientations.
The effectiveness of these orientations was evaluated under
different channel noise conditions, comparing their root mean
squared error (RMSE) values in estimating the location of
the visible light communication (VLC) receiver. Our method-
ology incorporates both classical and machine learning-based
algorithms, including Maximum Likelihood Estimation (MLE),
K-Nearest Neighbors (KNN) Regression, and Fully Connected
Neural Networks (FCNN), to process the power measurements
from the mirror arrays. The MLE approach’s performance is
benchmarked against the Cramer-Rao lower bound to evaluate
its precision and reliability. Simulations were conducted to assess
the effectiveness of the proposed classical and machine learning-
based methods. It was observed that certain IRS orientations,
particularly those capable of focusing light on specific room areas,
showed enhanced performance in locating the receiver. While
the KNN and FCNN algorithms underperformed compared to
MLE, they still achieved a level of accuracy influenced by
the spatial resolution of their training data. A key advantage
of these algorithms is their ability to function without prior
knowledge of the channel model, offering increased flexibility
in their application.

Index Terms – Intelligent Reflective Surfaces, Mirror Ar-
rays, Visible Light Positioning, Location Estimation, Cramér-
Rao Lower Bound, KNN Regression, Fully Connected Neural
Networks.

I. REF—INTRODUCTION

The growing use of light-emitting diodes (LEDs) for interior
lighting has spurred academic interest in their alternative ap-
plications. LEDs are known for their long lifespan, low energy
consumption, and versatile functionality [1]. Their capability
for high-frequency operation and rapid switching enables data
modulation, thus facilitating communication and positioning
applications in indoor environments. This has led to innovative
uses of LEDs in indoor visible light positioning (VLP),
where numerous studies have proposed position estimation
algorithms and explored bounds and limits for localization
accuracy [2]–[5].

Received Signal Strength (RSS) is a cost-effective and
straightforward method for implementation with LEDs, offer-
ing advantages over phase or Time of Arrival (TOA) based
estimation algorithms, particularly in terms of accuracy [6].

Additionally, some studies have investigated the hybrid per-
formance of combining RSS with other methods, improving
accuracy at the expense of increased computational load [7].
A notable contribution in this field is the development of
a generic closed-form expression for the Cramer-Rao Lower
Bound (CRLB), which quantifies the accuracy of localization
algorithms based on RSS measurements [8].

Intelligent Reflecting Surfaces (IRSs) have introduced novel
fields and applications in RF communications and location
estimation. An IRS consists of small, low-cost passive ele-
ments capable of altering the phase, direction, amplitude, and
frequency of RF signals [9]. The authors in [9] provide a
comprehensive review of the development of IRS systems.
Additionally, IRS has been used for beamforming, enabling
the redirection of electromagnetic waves in specific directions,
frequencies, or amplitudes. In the study [10], the authors in-
vestigate the enhancement of wireless communication via IRS.
They propose algorithms for joint active and passive beam-
forming to optimize signal power at the user, demonstrating
significant performance gains in simulated scenarios. In [11],
the authors introduce two iterative algorithms for single-user
and multi-user scenarios, achieving notable improvements in
energy efficiency compared to traditional RIS approaches. Fur-
thermore, several papers delve into the physical properties and
channel equations of RIS-based Visible Light Communication
(VLC) systems. Abdelhady et al. analyze the light reflection
models from RIS elements in metasurface and mirror array-
based structures [12]. This research establishes a baseline for
further investigation, particularly in point source cases as dis-
cussed in [12]. In [13], a low-complexity binary programming
algorithm is proposed for maximizing the achievable sum rate.
This method significantly enhances the sum rate, especially
in scenarios with a large number of users. Lastly, Hanaa
Abumarshood et al. present a joint optimization scheme of
NOMA decoding order, power allocation, and IRS reflection
coefficients to improve the bit error rate (BER) performance
of VLC systems using IRS. This approach is particularly
effective in scenarios involving blockages and random device
orientations [14].

The application of IRSs in wireless positioning systems
has also been a focal point of recent studies. There are
research in the literature about the usage of multiple IRS
under the absence of enough transmitters [15]. Also there are
several proposed device-to-device localization schemes for RF
communication using RIS receivers [16]–[19].

As traditional methods have become less effective in deci-
phering complex data, machine learning (ML) techniques have



gained prominence in the fields of estimation and prediction.
In Visible Light Positioning (VLP), this shift is evident with
the adoption of ML approaches for handling complex data
through model-free estimation techniques. These ML methods
are often referred to as fingerprinting techniques, as they utilize
a discrete set of data points collected in a grid pattern within a
room. In [20], the authors review current literature on the use
of ML as fingerprinting applications in VLP. The paper [21]
explores four distinct deep learning architectures, including
Fully Connected Neural Networks, Convolutional Neural Net-
works, and Long Short-Term Memory networks (LSTMs), for
two-dimensional location estimation. Haiqi Zhang et al. intro-
duce an innovative high-precision indoor positioning method
using visible light and a Deep Neural Network (DNN), opti-
mized by Bayesian regularization in [22]. This approach is
notable for its high accuracy achieved with a substantially
reduced number of training points and varied data acquisition
techniques. Additional works in the literature propose various
ML-based approaches for VLP, as seen in [23]–[26]. These
studies further demonstrate the versatility and effectiveness of
ML techniques in enhancing the accuracy and efficiency of
VLP systems.

Despite the numerous contributions to the literature regard-
ing machine learning-based methods and classical approaches
for location estimation, there exists a notable gap in sources
that comprehensively compare these two domains under sim-
ilar constraints and conditions. This research aims to bridge
this gap by offering key contributions in the following:

• Introducing a study of received power-based position
estimation in VLP systems using IRSs, with only a single
LED transmitter.

• Proposing a time division multiplexing location estima-
tion scheme, utilizing a single LED transmitter alongside
different estimation techniques.

• Comparing the performance of the ML estimator with the
CRLB under various channel noise conditions.

• Applying various machine learning-based methods and
comparing them with the ML estimator in terms of
RMSE.

To support our claims, we have performed simulations using
MATLAB to evaluate the effectiveness of the methods we
proposed.

The structure of the research paper is as follows: Section II
details the channel model for the VLP system in an indoor
environment, including essential formulas that describe the
relationship between transmitted and received power. In Sec-
tion III, we introduce our proposed estimation methods, which
include the maximum likelihood estimator, KNN regression
estimator, and fully connected neural networks. This section
also provides the theoretical CRLB for the ML estimator. Sec-
tion IV describes the simulation setup, including the physical
and optical characteristics of the objects in the room and the
orientation of the mirrors used in the experiment. The results
of the simulations, along with their analysis, are presented
in Section V. The paper concludes with final remarks and
conclusions in Section VI.

II. CHANNEL PROPERTIES OF VLP WITH INTELLIGENT
MIRROR ARRAYS

In the experiment, we utilized a single LED transmitter po-
sitioned at the location l, which has a normal vector denoted as
n. Both the location and orientation of the LED transmitter are
known to the receiver. The transmitter was centrally placed on
the ceiling of a room bounded by walls. The VLC receiver was
situated at the location x, maintaining a consistent orientation
n, which was directed straight up throughout the experiment.
In addition to the LED and receiver, the setup includes N

flat reflective surfaces, denoted as S1, S2, S3, ..., SN , which
constitute a controllable intelligent mirror array. This array is
positioned on one of the four walls inside the room. Each
mirror element is characterized by an orientation vector ñk,i

and position vectors l̃k,i, both of which are known to the VLC
receiver. The surface area of the mirrors can be calculated by
integrating the infinitesimal areas dSk around the point l̃k,i.
For the purpose of this study, it is presumed that the mirrors
exhibit glossy reflections [27], a key aspect in the formulation
of the channel model. Following that, the mirrors are designed
to have homogeneous and equal reflection constants across
their surfaces, indicated by the constant ρ. The objective is to

estimate the location of the receiver, x, by utilizing power
measurements derived from light emitted by the LED and
subsequently reflected off the mirror surfaces. In a classical
setup involving a limited number of LED transmitters and a
receiver, at least four transmitters are required to uniquely
determine the receiver’s location, x, in three-dimensional
space. However, in our investigated scenario, where only a
single LED transmitter is present in the room, a time-division
multiplexing approach is necessary. This involves conducting
multiple power measurements with varying orientations of the
mirror array, all of which are known to the receiver. The
formula for the received power measurement corresponding
to the ith orientation of the mirror array can be modeled as
follows [28]:

PRX,i = PTXH
LoS(x)+PTX

N∑
k=1

∫∫
Sk

dHNLoS(x, l̃k,i)+ηi

(1)

The geometric orientation of the components is depicted in
Figure 1, where all necessary vectors and components of the
VLP environment are defined.



Fig. 1: Schematic representation of the VLP system is illustrated, featuring a
single LED and an intelligent reflective array of mirrors, along with a VLC
receiver whose location is unknown. The orientation vectors for the LED,
mirror Sk , and the VLC receiver are denoted as n, ñk,i, and n, respectively.
The position vectors of these three entities are represented as l, l̃k,i, and x.
The schematic also includes the angles of radiance and irradiance between
these objects, which are indicated with the variables ψ, ψk , ϕ, ϕk,i, α, and
β.

The received power for the ith orientation of the mirror
array is denoted as PRX,i, where i = 1, 2, 3, ..., NL. Here, NL

represents the total number of different orientations used to
estimate the receiver’s location through power measurements.
Utilizing various measurements helps eliminate the singularity
issue commonly encountered in localization problems. In
equation (1), the term HLoS signifies the LoS component of
the power received by the VLC receiver. The symbol ηi corre-
sponds to the zero-mean Gaussian noise of ith measurement,
inherent in the channel, with a noise variance σ that remains
consistent and independent [29] across all measurements taken
using different mirror array orientations. Following the work
done in [12] field-of-view (FOV) of the receiver is presumed
to be 90 degrees, attributed to the hemispherical lens mounted
on top [30]. The mathematical formulation for the components
of the channel gain, is given by the following equations [27]:

HLoS(x) =
(m+ 1)A(cosϕ)mTs(ψ)g(ψ) cosψ

2π∥x− l∥2
(2)

and,

dHNLoS(x, l̃k) = (m+ 1)A(cosϕk,i)
m cosαk,iR(αk,i, βk,i)

× (cosψk,i)
mTs(ψk,i)g(ψk,i)

2π∥l− l̃k,i∥2∥x− l̃k,i∥2
dSk

(3)

where

R(αk,i, βk,i) =
ρ

2π

(
2rk,i cosβk,i

+ (1− rk,i)(µk,i + 1) cos (βk,i − αk,i)
µk,i
)

(4)

In equations (2) and (3), the parameter m represents the
Lambertian order of the LED transmitter. This measure of

directivity indicates how the visible light source distributes
illumination power in a direction deviating by some angle from
the source’s normal vector. A higher Lambertian order implies
that the transmitter is more directional, focusing the emitted
power around its normal vector. A denotes the area of the
photodetector used in the VLC receiver. The angles ϕ and ψ
represent the angles of irradiance and incidence, respectively,
on the Line-of-Sight (LoS) path between the transmitter and
the receiver. The variables ϕk,i, ψk,i, and βk,i correspond to
the irradiance angles for the kth element of the mirror array,
as configured according to the ith known orientation. Each
infinitesimal area of a mirror, denoted as dSk, around the point
l̃, is treated as a reflective particle. Given that each mirror’s
dimensions are relatively small compared to the distances
between the mirror and the LED, and between the mirror
and the receiver, a point source model is adopted for power
calculations. This approach leads to the following equality for
the power calculations:

HNLoS(x, l̃k) =

∫∫
Sk

dHNLoS(x, l̃k)

= (m+ 1)A(cosϕk,i)
m cosαk,iR(αk,i, βk,i)

× (cosψk,i)
mTs(ψk,i)g(ψk,i)

2π∥l− l̃k,i∥2∥x− l̃k,i∥2
ASk

(5)

The variable ASk
represents the surface area of the kth

mirror within the array, which is assumed to be equal for
each mirror element. The terms Ts(ψ) and g(ψ) denote the
optical filter gain and the optical concentrator gain of the
VLC receiver, respectively [28]. As commonly chosen [28],
these values are designed to be constant for different incidence
angles. To simplify the notation in this research paper, value
of Ts(ψ)g(ψ) is set to one. Moreover, the values rk,i and
µk,i are the fraction of diffuse component and directivity of
reflection components respectively [28]. rk,i can take values
between 0 and 1 where only the diffuse reflection is considered
when it is set to 0. The value of rk,i has been set to 0 in this
paper considering direct reflections. The angles mentioned in
equations (2), (3), and (4) can be substituted by employing the
following equivalent geometric transformations:

cosϕ =
(x− l)Tn

∥x− l∥
(6)

cosψ =
(l− x)T n̄

∥l− x∥
(7)

cosϕk,i =
(̃lk,i − l)Tn

∥̃lk,i − l∥
(8)

cosψk,i =
(̃lk,i − x)T n̄

∥̃lk,i − x∥
(9)

cosαk,i =
(l− l̃k,i)

T ñk,i

∥l− l̃k,i∥
(10)

cosβk,i =
(x− l̃k,i)

T ñk,i

∥x− l̃k,i∥
(11)



By utilizing the given geometric identities and the gain of
the receiver, the equations (2) and (3) can be rewritten using
vector notation as follows:

HLoS(x) =
(m+ 1)A((x− l)Tn)m(l− x)T n̄

2π∥x− l∥m+3 (12)

dHNLoS(x, l̃) =
(m+ 1)

(
(̃l− l)Tn

)(
(l− l̃k,i)

T ñk,i

)
4π2∥l− l̃k,i∥m+3∥x− l̃k,i∥3

Aρ
(
(̃lk,i − x)T n̄

)
dSk

(
2rk,i

(x− l̃k,i)
T ñk,i

∥x− l̃k,i∥

(1− rk,i)(µk,i + 1) cos (βk,i − αk,i)
µk,i

)
(13)

Additionally, the term cos (βk,i − αk,i) in equation (13) can
be calculated as follows:

cos (βk,i − αk,i) =

(
(x− l̃k,i)

T ñk,i

)(
(l− l̃k,i)

T ñk,i

)
∥x− l̃k,i∥∥l− l̃k,i∥

+
∥(x− l̃k,i)× ñk,i∥∥(l− l̃k,i)× ñk,i∥

∥x− l̃k,i∥∥l− l̃k,i∥
(14)

When determining the received power at a given location x,
several important factors should be taken into account. Firstly,
it is crucial to note that light reflections from the walls are
disregarded in this model, as their contribution is typically
weaker compared to the power received through the LoS
and NLoS paths from the mirrors. Additionally, if feasible,
reflections involving more than one mirror element are also
excluded, especially in cases where two mirrors face each
other at a small angle, leading to significant power loss. For
practicality and meaningfulness in the VLC channel detection
model, the multipath effect of light is best overlooked. It is
also essential to recognize that the equations presented in
this chapter are formulated in a generic manner, taking into
account general values for the location, orientation, and optical
properties of each element within the room’s boundaries. The
methodology for estimating the location of the VLC receiver,
utilizing equations (2) through (14), will be elaborated in the
subsequent section. This will include detailed descriptions of
the algorithms for applying Maximum Likelihood Estimation
and K-Nearest Neighbors methods.

III. VLP USING MLE, KNN AND FCNN TECHNIQUES

For accurate estimation of the receiver’s location in 3D
space using visible light, relying on a single LED is insufficient
to provide a unique solution. Consequently, it necessitates
taking multiple measurements with varying orientations of the
mirror array. The first method employed for estimating the
location of the LED involves a ML estimator. This estimator
operates by identifying the most probable coordinates that
correspond to the observed power measurements for different

mirror orientations. The second method utilizes a machine
learning-based KNN regression model. This model predicts
the receiver’s location by comparing the power measurements
at the test location with those of the k-nearest neighbors, which
were previously learned by the model during the training
phase.

A. ML Estimator

Based on the formula presented in equation (1) for a specific
location x, the log-likelihood function corresponding to the
received power at the VLC receiver can be expressed as
follows:

log p(PRX |x) = ã−
NL∑
i=1

1

2σ2
i

(
PRX,i − PTXH

LoS(x)

− PTX

N∑
k=1

∫∫
Sk

dHNLoS(x, l̃k,i)
)2 (15)

In the equation, ã represents the constant component of the
Gaussian distribution with respect to x, which does not contain
any information about the error induced by noise and thus
can be minimized. For the localization of the receiver, the ML
estimator aims to find the solution x̂ML that maximizes the
log-probability log p(PRX |x). This corresponds to minimizing
the following equation:

x̂ML = argmin
x

NL∑
i=1

1

σ2
i

(
PRX,i − PTXH

LoS(x)

− PTX

N∑
k=1

∫∫
Sk

dHNLoS(x, l̃k,i)
)2 (16)

B. Estimation with K-Nearest Neighbours (KNN) Regression

KNN regression is a model-free method employed for
predicting continuous values corresponding to feature vectors.
It operates independently of the need to evaluate equations
(12) and (13), which typically provide prior knowledge of the
VLP model.

The KNN regression is a fingerprinting-based method where
the position estimation is being done by obtaining information
from the measurements taken from specific points inside the
area of interest [20].

To effectively use KNN regression, a database is required
for the evaluation of test data. This database can be constructed
by recording power measurements from M distinct points
within a pre-selected grid inside the room. At each point, 9
measurements will be taken, and the corresponding position
vector will be recorded as the value for that particular vector.
The dataset, denoted as M, can be formulated as follows:

M =

{
xn =


PRX,1

PRX,2

...
PRX,NL

 ,yn =

[
x1
x2

]
, for n = 1, 2...,M

}

(17)



Algorithm 1 KNN Regression Algorithm for VLP

procedure KNN REGRESSION(M, PRX,test, k)
distances← empty list
for each x in M do

d← ∥xtest − x∥
Append (d, x) to distances

end for
Sort distances by distance
neighbors← first k elements of distances
x̂kNN ← 1

k

∑
(d,x)∈neighbors x

return x̂kNN

end procedure

The algorithm for implementing KNN regression in the context
of VLP is outlined as follows [20]:

Additionally, KNN regression algorithm will be utilized
with various datasets, denoted asM, each generated using data
measured under conditions of noise with differing variances.

C. Estimation with Fully Connected Neural Network (FCNN)
Neural networks represent a widely used and extensively

researched approach for conducting model-free, nonlinear pre-
dictions. FCNN stand out as one of the more straightforward
methods for training data and making predictions. In FCNN,
the output of each neuron is determined by the weights of
each input and a bias term, with this output then serving as
the input for neurons in the subsequent layer. An example of
an FCNN architecture employed for the VLP of the receiver
is depicted in Figure 2.

Fig. 2: An example of a neural network used for estimation is as follows:
The FCNN is designed with 9 input neurons, corresponding to 9 input power
features measured from 9 distinct orientations of the mirror array. It includes
two hidden layers, the first with 40 neurons and the second with 20 neurons.
The network culminates in two output neurons, which are intended to provide
the estimated x and y coordinates of the point in question.

After initializing the models, the dataset M will be com-
piled as per the procedure outlined in the algorithm. The
features from this dataset will be fed into the input layer of
the neural network, which in turn will output the estimated x
and y coordinates of the location.

In terms of the neural network architecture, the hyperbolic
tangent (tanh) function has been chosen as the activation

function between layers. Despite the more common use of
the Rectified Linear Unit (ReLU) as a nonlinear activation
function, the tanh function is preferred here due to its higher
sensitivity to changes in the input features. This heightened
sensitivity is attributed to the function’s steepness as it ap-
proaches the values of 1 and -1 [31]. The tanh function can
be mathematically expressed as follows:

ϕ(x) =
1− e−2x

1 + e−2x
(18)

For the output layer, the identity function ϕ(x) = x has
been utilized as the activation function, as this is appropriate
for a regression task.

D. Cramér-Rao Lower Bound (CRLB) Calculation for VLP

The CRLB establishes a bound for the variance of an un-
biased estimator by employing the Fisher Information Matrix
(FIM) [32], denoted as I(x). The FIM provides a measure
of the information that can be gleaned from the transmitters
about a given location under estimation, particularly through
the effect of the derivative of the location on the channel
gain. The FIM can be derived using the partial derivatives
of equation (15) as follows:

[
I(x)

]
l1,l2

=

NL∑
i=1

P 2
TX

σ2
i

∂hi(x)

∂xl1

∂hi(x)

∂xl2
(19)

For indices l1, l2 = 1, 2, 3, the total channel gain hi(x) can
be defined as follows, using equation (1):

hi(x) ≜ HLoS(x) +

N∑
k=1

∫∫
Sk

dHNLoS(x, l̃k,i) (20)

where PRX,i = PTXhi(x) + ηi.
The partial derivative of hi(x) with respect to xl can

be obtained through the following operation, as detailed in
equation (21):

∂hi(x)

∂xl
=
∂HLoS(x)

∂xl
+

N∑
k=1

∫∫
Sk

∂dHNLoS(x, l̃k,i)

∂xl
(21)

for i = 1, 2, ...NL and l = 1, 2, 3.
The partial derivatives of the components HLoS(x) and

dHNLoS(x, l̃) can be derived using equations (12) through
(14) as follows:

∂HLoS(x)

∂xl
=

(m+ 1)A

2π∥x− l∥m+3

[
mnl

(
(x− l)Tn

)m−1

×
(
(l− x)T n̄

)
− n̄l

(
(x− l)Tn

)m
−

(m+ 3)(xl − ll)
(
(x− l)Tn

)m(
(l− x)T n̄

)
∥x− l∥2

] (22)



and,

∂dHNLoS(x, l̃k,i)

∂xl
=

(m+ 1)A
(
(̃lk,i − l)Tn

)
(l− l̃k,i)

T ñk,i

4π2∥l− l̃k,i∥m+3

ρdSk

{[(
ñk,l,i(̃lk,i − x)T n̄− n̄l(x− l̃k,i)

T ñk,i

)
× ∥x− l̃k,i∥−4 − 4∥x− l̃k,i∥−6(xl − l̃k,l,i)(x− l̃k,i)

T ñk,i

× (̃lk,i − x)T n̄

]
2rk − (1− rk)(1 + µk)

[
cos (βk,i − αk,i)

µk

×
(
n̄l∥x− l̃k,i∥−3 + 3(̃lk,i − x)T n̄∥x− l̃k,i∥−5(xl − l̃k,l,i)

)
− µk cos (βk,i − αk,i)

µk−1 (̃lk,i − x)T n̄

∥x− l̃k,i∥3

× ∂ cos (βk,i − αk,i)

∂xl

]}
(23)

The partial derivative of cos (βk,i − αk,i), as presented in
equation 23, can be found as follows:

∂ cos(βk,i − αk,i)

∂xl
= cosαk,i

(
ñk,l,i∥x− l̃k,i∥−1

− (x− l̃k,i)
T ñk,i∥x− l̃k,i∥−3(xl − l̃k,l,i)

)
+

sinαk,i

(∥∥(x− l̃k,i)× ñk,i

∥∥−1
{
ñk,f(l+1),i

×
[
(xl − l̃k,l,i)l̃k,f(l+1),i − (xf(l+1) − l̃k,f(l+1),i)ñk,l,i

]
−

ñk,f(l+2),i

[
(xf(l+2) − l̃k,f(l+2),i)ñk,l,i − (xl − l̃k,l,i)

× ñk,f(l+2),i

]}
∥x− l̃k,i∥−1 − ∥x− l̃k,i∥−3(xl − l̃k,l,i)

× ∥(x− l̃k,i)× ñk,i∥
)

(24)

for l = 1, 2, 3, where l denotes the lth components of the
given vectors, the function f(l) used in equation (24) can be
defined as follows:

f(l) =

{
l if l ≤ 3,

l − 3 otherwise.
(25)

The CRLB of the MSE for a generic unbiased estimator can
be expressed as follows:

E
{
∥x− x̂ML∥2

}
≥ CRLB(x) = trace

{
I(x)−1

}
(26)

In the context of this research, we investigate the perfor-
mance of estimators under scenarios where the LoS path is
obstructed. Consequently, only the NLoS component of the
received power is utilized for position estimation. Furthermore,
the definition of the channel gain, as delineated in equation 20,
along with other related equations, will be modified to exclu-
sively encompass the NLoS channel gain. This modification
can be expressed as follows:

hi(x) ≜
N∑

k=1

∫∫
Sk

dHNLoS(x, l̃k,i) (27)

IV. SIMULATION SET-UP

In the simulation setup, we consider a Visible Light Po-
sitioning (VLP) design within a room measuring 4 meters in
width, 4 meters in length, and 3 meters in height. A single LED
transmitter is centrally placed on the ceiling, with its location
denoted by l = [2, 2, 3] meters. The LED’s normal vector, n,
is oriented towards the center of the mirror array, which is
situated in the middle of one of the room’s walls. Possible
orientations for n include the vectors [0, 2,−1.5], [4, 2,−1.5],
[2, 0,−1.5], and [2, 4,−1.5].

The VLC receiver has an unknown position vector x, which
we aim to estimate, and an upwardly directed orientation
vector n̄ = [0, 0, 1].

For the simulation, a room bounded by walls serves as
the estimation space, with the same dimensions as mentioned
earlier. An intelligent mirror array, consisting of 441 individ-
ually controllable mirrors Sk (where k = 1, 2, 3, ..., 441), is
located in the middle of one wall. Each mirror has its own
position l̃k,i and normal ñk,i vectors. The orientation of these
mirrors is adjustable for position estimation purposes. Time
Division Multiplexing (TDM) is implemented, with mirrors
being rotated by a microcontroller and servo motors along
the elevation and azimuth axes. The mirrors undergo 9 or 16
rotations in a sequence agreed upon in the simulation, with the
VLC receiver measuring light power at each rotation. Thus,
one position estimation cycle encompasses 9 time durations
corresponding to the orientation changes of the mirrors.

Additionally, the LED positioned at the room’s center has
a Lambertian Index (m) of 5, and a power, PTX , of 5 Watts.
Each mirror in the array measures 2 cm in height and 4 cm
in width, resulting in an 8 cm² area. The mirrors are spaced 2
cm apart horizontally and 1 cm vertically, as shown in Figure
3. The mirrors also possess additional properties: a fraction of
the diffuse component rk, the directivity of reflection µk, and
a reflection coefficient ρk = 0.95.

Fig. 3: Arrangement of the mirrors in the intelligent reflective array.

Additionally, the receiver possesses specific properties, such
as the Field-of-View (FOV), which is set to 90 degrees,
corresponding to 360 steradians. The surface area of the
receiver’s lens is assumed to be 1cm2, a realistic size for
a photo-detector. The LED transmitter, VLC receiver, and



the mirror array have been graphically represented within the
room’s boundaries using MATLAB, as depicted in Figure 4.

Fig. 4: 3D plot of the room showcasing the LED transmitter, VLC receiver,
and mirror array.

For the simulation, three different mirror array orientations
were employed: ’directed,’ ’random,’ and ’uniform.’ In the
’directed’ orientation, the mirrors’ normal vectors were aligned
with equally spaced points on a 2D grid, where the grid’s
height matched that of the receiver. The number of points
on this grid was determined based on the desired number of
measurements for the estimation task, which were set to 9 or
16. The normal vector for each mirror in the ’directed’ array
can be defined as follows:

ñk,i =

l̃k,i −

( 4√
m

+ 1)(i mod 4)

( 4√
m

+ 1)(⌈ i4⌉)
z


∥∥∥∥∥̃lk,i −

( 4√
m

+ 1)(i mod 4)

( 4√
m

+ 1)(⌈ i4⌉)
z

∥∥∥∥∥
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for m ∈ {9, 16}. z is the height of the receiver and i is the
ith power measurement. The value m denotes the number of
measurements being taken for each estimation process which
can be 9 or 16.

An example orientation of all mirrors in a directed mirror
array is illustrated in Figure 5.

Fig. 5: The mirrors are oriented such that each mirror’s normal vector is
directed towards the point [2, 2, 1.5]T .

For the ”random” orientation scenario, the maximum angles
for azimuth and elevation rotations of the mirrors have been
set. These maximum angles are chosen to ensure the mirrors
can be rotated robustly, precisely, and can accommodate the
necessary mechanical systems for the selected angle. In the
simulation, the maximum rotation angle is set to 40◦. The
rotation is based on the azimuth and elevation angles for each
mirror k and each measurement i, with respective distributions
θ̃ ∼ U[0, 40] and ϕ̃ ∼ U[0, 40]. The normal vector of each
mirror in the ”random” array can be defined as:

ñk,i =

 cos(ϕ̃) cos(θ̃) − sin(θ̃) cos(ϕ̃) sin(ϕ̃)

sin(θ̃) cos(θ̃) 0

− sin(ϕ̃) cos(θ̃) sin(ϕ̃) sin(θ̃) cos(ϕ̃)

n0

(29)
where n0 is the normal vector perpendicular and outward

to the wall on which the mirror array is mounted.
An example set-up of a mirror array with ”random” orien-

tation is depicted in Figure 6.

Fig. 6: The mirrors in the ’random’ orientation are rotated on the azimuth and
elevation angles according to a uniform distribution U[0, 40] degrees.

Lastly, the mirrors can be ’uniformly’ oriented towards a
selected direction on the grid. This is achieved by determining
the normal vector of the middle mirror in the array to the
specified point. This normal vector will then be used as the



reference for orienting all mirrors in the array. The normal
vector of each mirror in the ’random’ array can be defined as:
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for m ∈ {9, 16} with the addition that l̃mid,i is the location
vector of the mirror at the middle of the array. Therefore, the
’uniform’ orientation assigns the same normal vector to each
mirror as the one used for the mirror at the middle.

An example array design with ”uniform” orientation can be
seen in Figure 7.

Fig. 7: Orientation of the mirrors in the scenario where they are uniformly
directed towards the point [2.5, 2.5, 0.85]T .

These three orientations will be utilized and compared in
the simulation part under various algorithms and scenarios.

In the simulation part, the defined methodologies and sim-
ulation objects will be employed to obtain results. All power
measurements will be taken, including only the NLoS channel
gain, assuming the LoS path is obstructed. Initially, power
measurements on a cross-section at a specified height will be
presented for the three different orientations. Subsequently,
the performance of the ML estimator for different noise
variances and its comparison with the corresponding CRLBs
are compared using plots. Finally, the machine learning-based
methods are discussed and compared with the results of the
ML estimator.

V. SIMULATION RESULTS AND ANALYSIS

For the simulation part, there are some important remarks to
be addressed regarding parameter selections. The transmitted
power PTX of the LED is set to 5 Watts, and its location is fixed
at l = [2, 2, 3]T meters, corresponding to the middle of the
ceiling of the room. The center of the intelligent mirror array
is positioned at [2, 4, 1.5]T meters, aligning with the midpoint
of one of the walls. The normal vector of the LED is directed
towards the midpoint of the mirror array, which corresponds
to setting the orientation vector n = [0, 0.8,−0.6]T meters.

Furthermore, the directivity constant µk is set to 5, and the
fraction of the diffuse component rk is set to 0. As mentioned
in the simulation section, the dimensions of the mirror array
have been chosen to be the same as depicted in Figure 3. After
configuring the dimensions of the room, LED transmitter, mir-
ror array, and VLC receiver objects, simulations are conducted
to obtain power measurements at a cross-section of the room
with a constant height z = 0.85 meters.

The results of the power measurements for the randomly
oriented mirror array, generated mathematically using the
formula in 28, are presented in 2D and 3D plots in Figures 8
and 9.

Fig. 8: 3D NLoS power map of the room obtained using a random mirror
orientation. The power has been collected from the cross-section of the room
at a height z = 0.85 meters.

Fig. 9: 2D NLoS power map of the room obtained using a random mirror
orientation. The power has been collected from the cross-section of the room
at a height z = 0.85 meters.

Power measurements using the ’directed’ orientation of the
mirror array, created using the formula in 27, are presented in
2D and 3D plots in Figures 10 and 11.



Fig. 10: 3D Non-Line-of-Sight (NLoS) power map of the room obtained using
a directed mirror orientation. The point of direction is [2.5, 2.5, 0.85]T . The
power has been collected from the cross-section of the room at a height of
0.85 meters.

Fig. 11: 2D NLoS power map of the room obtained using a directed mirror
orientation. The point of direction is [2.5, 2.5, 0.85]T . The power has been
collected from the cross section of the room at height 0.85m

Power measurements using the ”uniform” orientation of the
mirror array created using the formula in 29 in 2D and 3D
plots can be examined from Figures 12 and 13.

Fig. 12: 3D NLoS power map of the room obtained using a uniform mirror
orientation. The point of direction is [2.5, 2.5, 0.85]T . The power has been
collected from the cross section of the room at height 0.85m

Fig. 13: 2D NLoS power map of the room obtained using a uniform mirror
orientation. The point of direction is [2.5, 2.5, 0.85]T . The power has been
collected from the cross section of the room at height 0.85m

From the figures, it can be observed that the ’directed’ and
’uniform’ orientations provide a more focused illumination
on the cross-section compared to the ’random’ orientation.
Although this does not directly imply a correlation with the
CRLB and the accuracy of the ML estimator, it can be
considered insightful information.

Following the power measurements, the estimation of the
VLC receiver’s position, located at [2.5, 2.5, 0.85]T inside the
room, has been attempted using a bounded numerical search
algorithm. For the algorithm, an initial point x0 is selected as
the starting state, where it iteratively minimizes the difference
between the real location and the current state. This is achieved
using a model-dependent minimization technique that utilizes
the knowledge of equations (12) and (13). The mathematical
expression for the initial choice is represented as a random
vector below, formulated as:



x0 =

 2.5
2.5
0.85

+

x̃ỹ
z̃

 (31)

where x̃, ỹ, z̃ ∼ U[−0.3, 0.3]

In the experiment, either 9 or 16 readings are collected
at the receiver’s location, influenced by AWGN with a noise
variance denoted as σ2. Subsequently, to deduce the position
of the VLC receiver, the Levenberg-Marquardt Algorithm, a
numerical optimization technique, is applied. This algorithm
iteratively refines the initial location vector x0 to reduce the
estimation error. A series of 100 trials were performed for each
selected set of σ values, and the resulting Root Mean Square
Error (RMSE) was computed. Furthermore, the CRLB was

calculated for different mirror orientations, aimed at establish-
ing a minimum threshold for the variance, or experimentally,
the RMSE of the unbiased ML estimator. The experiment first
focused on the ”directed” array orientation, under conditions
with either 9 or 16 measurements. The obtained RMSE and
CRLB values were documented and are displayed in Figure
14.

Fig. 14: The RMSE and CRLB values for estimating the location of the VLC
receiver across various noise variances, using a ”directed” array orientation,
are detailed. In these visual representations, the red plots signify estimations
conducted with 16 measurements, while the blue plots correspond to estima-
tions made using 9 measurements.

The same experimental procedure has been repeated for the
”random” orientation of the mirror array and the results have
been recorded to the plot in the Figure 15

Fig. 15: The RMSE and CRLB values for estimating the location of the VLC
receiver across various noise variances, using a ”random” array orientation,
are detailed. In these visual representations, the red plots signify estimations
conducted with 16 measurements, while the blue plots correspond to estima-
tions made using 9 measurements.

Lastly, the results of using a mirror array with ”uniform”
orientation have been tested and the resultant RMSE and
CRLB values are obtained. They can be seen from the plots
in Figure 16

Fig. 16: The RMSE and CRLB values for estimating the location of the VLC
receiver across various noise variances, using a ”uniform” array orientation,
are detailed. In these visual representations, the red plots signify estimations
conducted with 16 measurements, while the blue plots correspond to estima-
tions made using 9 measurements.

For the purpose of analyzing and comparing the results, all
three figures have been merged into one comprehensive figure,
Figure 17, which includes the RMSE and CRLB plots for each
of the three orientation schemes.



Fig. 17: The plot presents RMSE and CRLB values for estimating the VLC
receiver’s location across a spectrum of noise variances, using various array
orientations.

From Figures 14 - 16, it is evident that the RMSE curves
align with their respective CRLB curves as the Signal-to-
Noise Ratio (SNR) increases, coinciding with a decrease in the
channel noise variance σ. This alignment is anticipated, given
that the CRLB delineates the minimum variance achievable by
any unbiased estimator.

Figure 17 reveals that in comparison to the ”random” orien-
tation, both ”directed” and ”uniform” orientations demonstrate
superior performance. This improvement is attributed to the
enhanced focusability of light in the ”directed” and ”uniform”
scenarios, which are more sensitive to the position vector.
Notably, the ”directed” orientation slightly outperforms the
”uniform” orientation in terms of estimation accuracy.

Furthermore, due to the room’s physical boundaries and
the numerical optimizer’s operation within specified limits,
the RMSE curve falls below the CRLB curve at lower noise
variances. This is because the estimator is confined within
the room’s dimensions, whereas the CRLB presupposes an
unbounded estimation environment, allowing for an RMSE
that is lower than the CRLB under certain conditions.

Subsequent to the ML estimator’s results, the KNN re-
gression model was applied. Following the approach outlined
in KNN regression algorithm, the algorithm estimated the
location of the VLC receiver independently of any model
knowledge. This estimation process was repeated by gener-
ating training datasets for various noise variances and evalu-
ating them against a test set with a uniform noise variance.
The test set comprised 500 randomly chosen data points
on the cross-section at z = 0.85 m, following a uniform
distribution with x, y ∼ U(0, 4). The outcomes of the KNN
regression, tested with datasets created at noise variances
σ2 = 10−10, 10−14, 10−18, are depicted in Figures 18, 19,
and 20, showcasing the effects of varying the hyperparameter
for the number of nearest neighbours.

Fig. 18: The RMSE values for the KNN regression model, relative to a
spectrum of ’number of nearest neighbours’ values, are documented. This
model was trained using data produced under various noise variances and
tested against data generated under a noise condition with σ2 = 10−10.

Fig. 19: The RMSE values for the KNN regression model, relative to a
spectrum of ’number of nearest neighbours’ values, are documented. This
model was trained using data produced under various noise variances and
tested against data generated under a noise condition with σ2 = 10−14.



Fig. 20: The RMSE values for the KNN regression model, relative to a
spectrum of ’number of nearest neighbours’ values, are documented. This
model was trained using data produced under various noise variances and
tested against data generated under a noise condition with σ2 = 10−18.

In the estimation experiments with test data generated
under noise variances of σ2 = 10−14 and σ2 = 10−18,
the RMSE worsens as the number of neighbours increases.
Optimal performance for these two models is observed when
using 3-4 neighbours as the hyperparameter. Interestingly,
compared to the Maximum Likelihood (ML) estimator, the
model trained with the lowest noise variance dataset does not
always yield the lowest RMSE, indicating that each training
set may perform differently on various test sets.

Contrastingly, in the first experiment shown in Figure 18,
which uses a test set generated under a noise variance of
σ2 = 10−10, the model’s performance improves with an
increasing number of neighbours across all five cases. How-
ever, a closer inspection of the RMSE values reveals minimal
variation, suggesting a convergence beyond a certain point.
This pattern could be attributed to the VLC receiver’s location
being closer to the room’s center, where increasing the number
of neighbours may lead to predictions gravitating towards
the room’s central area, especially in high noise variance
situations.

Lastly, various FCNN models have been explored to es-
timate the location of the VLC receiver. Networks with 0,
1, 2, and 3 hidden layers were trained using data generated
under noise variances of σ2 = 10−10 and σ2 = 10−14. The
resulting RMSE values from these models were then compared
with those from the previously mentioned KNN regression.
The comparative results of the FCNN and KNN models are
displayed in Figures 21 and 22.

Fig. 21: The RMSE performances of the estimation models, employing both
FCNN and KNN algorithms, are evaluated for different noise variances. These
models are trained using a dataset generated under a noise variance of σ2 =
10−10.

Fig. 22: The RMSE performances of the estimation models, employing both
FCNN and KNN algorithms, are evaluated for different noise variances. These
models are trained using a dataset generated under a noise variance of σ2 =
10−14.

Compared to the KNN models, it is observed that the FCNN
architectures exhibit superior performance at higher noise vari-
ances. This is attributed to the SNR levels being sufficiently
high to capture the essence of the data. By varying the neural
network architectures and adjusting hyperparameters, further
enhancements in estimation accuracy can be achieved. While
the machine learning-based models may not perform as well
as the classical ML estimation under certain conditions, they
demonstrate commendable estimation capabilities, particularly
under high SNR scenarios, even without explicit knowledge of
the underlying model. Additionally, their performance can be
improved by enlarging the dataset, which involves increasing
the number of points where power measurements are collected.



VI. CONCLUDING REMARKS

In this research paper, we investigate the VLP performances
of the ML estimator, KNN regression, and various FCNN
architectures under different SNR conditions. Throughout the
study, the LoS path is assumed to be blocked, allowing us to
assess the performance of the estimators in scenarios where
no LoS light power reaches the VLC receiver. These models
were tested in a simulated environment featuring a single
LED transmitter and an intelligent mirror array. This research
aims to demonstrate that position estimation can be effectively
achieved using only one light source, with the assistance of a
mirror array to overcome the challenges of singularity. In the
classical ML estimation approach, it has been observed that di-
recting the mirrors to various points inside the room improves
power measurement and, consequently, the estimation perfor-
mance. Additionally, a model-free KNN regression algorithm
has been employed for location estimation, alongside classical
estimation methods. The results indicate that these models
perform well under the influence of AWGN with low variance.
To compare the KNN with another machine learning-based
method, various FCNN structures were tested under different
noise conditions. Notably, the neural networks demonstrated
superior performance compared to KNN regression, particu-
larly under high channel SNR conditions, where they could
estimate the location of the receiver with an RMSE of 0.1
times the resolution of the power measurements. Overall,
this paper shows that employing multiple measurements and
machine learning-based methods can achieve cost-effective
estimation, albeit with a trade-off in estimation performance.
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