
Research Project in Communication Systems
12 Credits

Multiresolution Framework for
Ptychography

January 3, 2025

Author:
Efe Tarhan

Supervisors:
Jonathan Dong

Vincent P. L. Guillemet

Biomedical Imaging Group
Ecole Polytechnique Fédérale de Lausanne



Abstract

Ptychography is a computational imaging technique that enables high-
resolution and quantitative phase imaging by reconstructing complex-valued
images from coherent diffraction patterns. However, the reconstruction pro-
cess poses significant computational challenges due to the non-convexity of
the optimization problem and the high dimensionality of the data. This re-
port presents a novel multiresolution framework inspired by Partial Differential
Equations (PDEs) and wavelets to improve the efficiency and reliability of pty-
chographic image reconstruction. The proposed method leverages box-splines
to represent the high-resolution image as a hierarchy of basis functions, al-
lowing for iterative refinement from low to high frequencies. By incorporating
redundancy and gradual resolution enhancement, the framework mitigates the
risks of local minima and accelerates convergence. Experimental validation on
biological microscopy data demonstrates the effectiveness of the approach, of-
fering significant improvements in computational efficiency and reconstruction
quality.
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1 Introduction
Ptychography is a state-of-the-art imaging technique that combines computational
algorithms with optical microscopy to achieve high-resolution, complex-valued re-
constructions of samples. One of its key advantages over conventional microscopy
techniques is that it does not require high-quality lenses with high diffraction effi-
ciency to produce high-quality images of large fields of view. Instead, ptychography
relies on oversampling and algorithmic reconstruction [1]. By capturing a series
of diffraction patterns as the sample is scanned through overlapping regions, pty-
chography enables the synthesis of a high-resolution image with a large field of
view, while also allowing for the quantitative recovery of phase information. This
capability is particularly valuable for studying biological cells. A major challenge
in obtaining high-quality reconstructions arises from the phase retrieval problem,
where the phase of light waves is lost during the imaging process and must be accu-
rately recovered. This is achieved by leveraging the captured diffraction patterns.
Consequently, ptychography can achieve spatial resolutions that surpass the diffrac-
tion limit of the objective lens [2]. The structure of the measurements used for the
phase retrieval task in order to solve the reconstruction process can be described as
follows:

y = |Ax|2, (1)

where y represents the measurements, A is the ptychography operator, and x is the
signal to be sampled.

The reconstruction process in ptychography is computationally challenging due
to the non-convex nature of the underlying optimization problem, which often leads
to slow convergence and susceptibility to local minima. This project addresses these
challenges by proposing a multiresolution framework inspired by Partial Differential
Equations (PDEs) and wavelets, leveraging box-splines to progressively refine the
reconstruction from low to high frequencies. The essence of this approach lies in the
progressive refinement of the target image using a hierarchical representation based
on box-splines, which serve as a basis for modeling the image. The recovery of
an unknown signal from noisy measurements, an inverse problem, typically involves
formulating the reconstruction as an optimization problem. Following the continuum
formulation [3], the inverse problem can be expressed as:

argmin
f∈X

(E(ν(f), y) + λR(f)) , (2)

where f is the unknown signal, X is an appropriate search space, y represents the
measurements, E quantifies data fidelity, and R is a regularizer incorporating prior
knowledge. The regularizer acts in the continuous domain, ensuring well-posedness
and enabling representation at any resolution. To solve this problem, the multireso-
lution framework starts with a coarse representation of the signal and progressively
incorporates finer details through a series of basis functions such as box-splines.
These functions allow the image to be represented as a combination of low- and
high-frequency components, facilitating efficient and accurate reconstruction.

By employing a multiresolution strategy, the framework reduces the computa-
tional burden associated with solving the non-convex optimization problem. Starting
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with a coarse approximation of the image, the algorithm incrementally integrates
higher-frequency details, enabling faster convergence and mitigating the risks as-
sociated with local minima. The hierarchical nature of this approach allows for
a natural balance between computational efficiency and reconstruction accuracy.
Moreover, the use of box-splines ensures that the solution space is well-defined,
offering a structured and effective way to address the challenges of ptychographic
image reconstruction.

This project brings together the domains of ptychography and multiresolution to
offer an alternative and efficient solution for high-resolution image reconstruction.
By integrating principles from Partial Differential Equations (PDEs), wavelets, and
box-splines modeling, the project develops a cohesive framework that bridges exist-
ing tools for ptychographic simulation and multiresolution techniques. The resulting
algorithm is designed to efficiently address the computational challenges inherent in
ptychographic reconstruction.

The report is structured as follows: following this introduction, the theoretical
background on ptychography and multiresolution frameworks is presented in Section
2. Section 3 outlines the methods used, including the formulation of the linear
and nonlinear problems, the probe parameter adjustments, and the multiresolution
approach. The results of the linear and nonlinear reconstructions are detailed and
analyzed in Section 4. Finally, the report concludes with a discussion of recent
improvements, the challenges encountered and potential future directions for further
development in Appendix A.

2 Background
In this section, the concepts and tools used to establish a baseline for the project
are briefly presented to facilitate an understanding of the individual components.

2.1 Ptychography

Ptychography is a computational imaging technique that enables high-resolution,
quantitative phase imaging by reconstructing complex-valued images from coherent
diffraction patterns. Originally introduced by Hoppe in 1969, ptychography ad-
dresses the phase problem by combining diffraction data from multiple overlapping
regions of the sample. This overlapping measurement strategy enables the recovery
of lost phase information, a critical requirement for reconstructing the full complex-
valued sample image [1].

4



Figure 1: Ptychography measurement setup.

The forward operation in ptychography can be expressed mathematically. The
pupil function p : R2 → C models the aperture and is compactly supported on
a square. The moving sample can be represented as a complex-valued function
x(., s) : ΩX × R2 → C, where ΩX ⊂ R2 represents the region of interest of the
sample, and s is the amount of shift of the sample for each measurement.

The Fourier transform operator is denoted by F . The forward model for the
measured intensity can be expressed as [4]:

ys(r) =
∣∣F{

p(x, y) · x(., s)
}
(r)

∣∣2 , (3)

where yn(r) represents the measured intensity at the detector, p(x, y) is the pupil
function, xn(x, y) is the sample function for the n-th measurement, and (sx, sy) is
the spatial shift of the sample.

Although this measurement encodes both the amplitude and phase information
of the sample, only the intensity is directly observed. Consequently, recovering the
phase information becomes essential for reconstructing the sample image x.

In its discrete form, this operation can be simplified as:

A = F · P · S · C, (4)

y = |Ax|2, (5)

where:

• F : FFT (Fast Fourier Transform) matrix, representing the Fourier transform
of the signal resulting from the optical properties of far-field illumination.

• P : Probe matrix, representing the geometrical aperture of the probe function,
which is a square in this case.

• S: Shift matrix, representing the shift of the input. This is a space-shift-
invariant feature and can also be interpreted as the entire setup being shifted.
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• C: Crop matrix, used because the aperture has a finite support. It reduces
the region of interest to a smaller area to optimize memory usage.

This formulation will be used throughout the report to represent the full pty-
chographic forward operation and its components in both continuous and discrete
domains.

To address the challenges of reconstructing x in ptychography, a multiresolution
algorithm will be employed. This approach progressively refines the reconstruction
by starting at coarser scales and incorporating finer details iteratively, offering im-
proved computational efficiency and stability in solving the non-convex optimization
problem. The details of this algorithm and its implementation will be discussed in
the next section.

2.2 Multiresolution Algorithm

The multiresolution algorithm leverages the hierarchical properties of CPWL (Con-
tinuous and Piecewise Linear) functions, parameterized through box splines, to iter-
atively refine the solution at multiple resolutions. This approach provides a robust
framework for solving high-dimensional, non-convex optimization problems while
maintaining computational efficiency [3, 5].

2.2.1 Basis Function Framework

A CPWL (Continuous and Piecewise-Linear) function f : Rd → R is defined on a
domain that is partitioned into a set of non-overlapping polytopes {Pk}. Within
each polytope, f(x) behaves as a linear function. Formally, f(x) can be expressed
as:

f(x) =
∑
k

(a⊤k x+ bk)1Pk
(x), (6)

where:

• ak and bk are parameters defining the affine function within the polytope Pk,

• 1Pk
(x) is the indicator function, which is 1 if x ∈ Pk and 0 otherwise.

Box splines are used as basis functions for parameterizing CPWL functions.
These splines have several important properties:

• Compact Support: Each box spline affects only a localized region of the do-
main, making computations efficient.

• Refinability: Box splines support hierarchical (coarse-to-fine) representations
through dyadic scaling.

• Exact Representation: Refinability ensures that functions represented at a
coarse scale can be exactly represented at finer scales.
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A box spline BΞ0(x) is defined recursively. For example, for the piecewise-
constant box spline:

BΞ0(x) =

{
1

| detΞ0| , x =
∑d

r=1 trξr for tr ∈ [0, 1],

0, otherwise.
(7)

Higher-order box splines are defined recursively as:

BΞp(x) =

∫ 1

0

BΞp−1(x− tξd+p)dt. (8)

The refinement of CPWL functions is based on the dyadic refinement property of
box splines:

ϕ
(x
2

)
=

1

2

∑
k∈{0,1}d

ϕ(x+ k). (9)

This property ensures that a CPWL function represented at a coarse scale s can be
exactly represented at a finer scale s+ 1. The search spaces at different resolutions
are nested:

· · · ⊆ X(s−1) ⊆ X(s) ⊆ X(s+1) ⊆ · · · , (10)

where X(s) is the space of CPWL functions spanned by the box spline basis at scale
s [3].

2.2.2 Discretization

For a linear forward operator ν, the discretization at scale s expands the CPWL
function in terms of its basis coefficients cs:

vm(fs) = ⟨νm, fs⟩ =
Ns∑
n=1

cs,n⟨νm, ϕs,n⟩ = h⊤
s,mcs. (11)

The forward operator at scale s is represented as:

As = As+1Us, (12)

where Us is the matrix that refines coefficients from scale s to s+ 1 [3].
For Fourier-domain operators, the box spline basis is evaluated in the Fourier

domain:
⟨νm, ϕs,n⟩ = 2−sdϕ̂(2−sωm)e

−j2−sω⊤
midx−1

s [n]. (13)

2.2.3 Optimization Objective

The multiresolution optimization framework minimizes a cost functional at each
scale:

Ls(x̃ss) =
1

2
∥y − Asx̃ss∥22 + λRs(x̃ss), (14)

where Rs(x̃ss) is a regularizer applied to the input x̃ss at the discrete scale ss,
specifically using Hessian Total Variation (HTV) in this project.
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1. Initializing at a coarse scale s0 with coefficients x̃s0 .

2. Solving the optimization problem at scale ss.

3. Refining the coefficients to the next scale: x̃ss+1 = Usx̃ss .

4. Repeating until the optimization is concluded at the finest scale sfine.

2.2.4 Regularization: HTV

Hessian Total Variation (HTV) is a second-order extension of total variation, char-
acterizing the second-order variation of a function f . It is particularly effective
for promoting sparsity in second-order derivatives, making it well-suited for CPWL
functions, where second-order derivatives vanish almost everywhere except at bound-
aries.

The Hessian matrix of a function f : Rd → R is:

H{f} =


∂2f
∂x2

1
· · · ∂2f

∂x1∂xd

... . . . ...
∂2f

∂xd∂x1
· · · ∂2f

∂x2
d

 . (15)

For CPWL functions, the Hessian is defined in the distributional sense. The second-
order directional derivative along a direction u is given by D2

uf(x) = u⊤H{f}(x)u,
and using the eigenvectors vq and eigenvalues λq of H{f}, we have:

D2
uf(x) =

d∑
q=1

t2qλq, (16)

where u =
∑d

q=1 tqvq. This fully characterizes the second-order directional deriva-
tives of f . The explicit equation for the HTV regularizer R(c) is:

HTV(f) =

∫
R2

∥Hf (x, y)∥S1 dx dy =

∫
R2

2∑
r=1

σr(Hf (x, y)) dx dy. (17)

By using HTV as a regularizer, we promote configurations where the second-order
derivatives of f vanish almost everywhere. This is particularly relevant for CPWL
functions, where HTV penalizes changes in gradients across polytope boundaries,
ensuring sparsity in second-order variations and favoring piecewise-affine reconstruc-
tions. This makes HTV an effective regularization tool in high-dimensional inverse
problems.

2.2.5 Algorithm

The multiresolution algorithm operates iteratively, starting from a coarse grid and
progressively introducing finer details. At each scale, the problem is formulated as:

argmin
f∈X(s)

(E(ν(f), y) + λR(f)) , (18)
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where E quantifies data fidelity, R(f) is the regularization term, and λ balances the
two [3].

The specific multiresolution algorithms and their implementation details can be
found in the paper "A Box-Spline Framework for Inverse Problems With Continuous-
Domain Sparsity Constraints" by Pourya et al. [3]. These algorithms leverage the hi-
erarchical structure of box splines to efficiently solve high-dimensional inverse prob-
lems by iteratively refining the representation of the solution across scales.

The combination of the ptychography problem and the multiresolution algo-
rithm, incorporating box spline representations, will be detailed in the next section.

2.3 A Note on the Choice of Ptychography

Initially, the project was designated for the implementation of the multiresolution
framework on the Fourier Ptychography method, which has the following forward
operation [4]:

ys(r) =
∣∣∣F−1

{
p̂(k) · F

[
x(·, s) · ej⟨k,s⟩

]
(k)

}
(r)

∣∣∣2 . (19)

However, since this algorithm involves a Fourier transform of the tilted sample im-
age before its multiplication with the probe pupil, the information is compressed
primarily into the low-frequency regions of the image. As the multiresolution algo-
rithm applies averaging at coarser scales, a significant amount of information would
be lost, leading to severe aliasing and the optimization approach less effective and
unstable.

To address this issue, and after discussions with the project supervisors, it was
decided to replace Fourier Ptychography with Ptychography. This choice better
aligns with the multiresolution framework and avoids the aforementioned challenges.

3 Methods

3.1 Ptychography with Multiresolution

In this section, the integration of the two algorithms is explained in detail. The
forward operation Asm , which depends on the scale sm at which it is applied, rep-
resents the general expression for the ptychography measurement process. Mea-
surements are generated using different diffraction patterns with a probe, taking
an input x of shape (1, height,width) and producing measurements y with shape
(# of measurements, height,width). This process is illustrated in Figure 2.
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Figure 2: The figure illustrates the ptychographic forward operation. The ground truth
image x is illuminated by a probe P, generating a series of diffraction patterns. The forward
operation Asm computes the ptychographic measurements y = [y1, y2, . . . , yN ], where each
measurement corresponds to the squared magnitude of the Fourier-transformed signal,
|Asmx|2.

Following the forward operation, the multiresolution optimization framework is
applied to the project. As explained in Section 2.2.3, the algorithm begins with
an initial random guess of the image at the coarsest scale s0. A gradient descent
optimization is then performed at this scale using the initial guess and the mea-
surements obtained from the forward operation described above. The optimization
process incorporates regularization and additional features, such as a learning rate
guided by the gradient ∇Losss0 . The calculations of these gradients will be provided
in the following subsections.

Upon completing the optimization at a given scale, which is determined by a
predefined number of epochs or a stopping criterion, the obtained estimate x̂s0 is
upscaled to a finer scale by a factor of 2, resulting in the input x̃sm for the optimiza-
tion at scale sm.

This process is repeated iteratively, progressively refining the resolution until
the finest possible scale of the image is reached. The optimization stops based on
a predefined stopping criterion. The overall process, naming conventions, and the
loss function are illustrated in Figure 3.
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Figure 3: The framework begins with a random initialization x̃s0 ∼ N (0, σ) at the coarsest
scale s0. Gradient descent is applied iteratively using the loss function Losssm , and the
result x̂sm is upscaled to the next finer scale. This process continues until the finest scale
ss, yielding the final reconstruction x̂ss .

3.2 Linear Problem Setup

At the initial phase of the project, the algorithm and the integrity of its modules
were tested using a simplified problem where the detector was assumed to directly
capture the complex measurements, i.e.,

x̂ = argmin
x∈RN×N

||y − Ax||2 + λR(x), (20)

where y represents the observed measurements, A is the forward operator, and R(x̂)
is the regularizer with a weighting parameter λ.

In this case, the regularization parameter is non-differentiable, whereas the data
fidelity term is differentiable. The gradient of the data fidelity term is given by:

∇xLoss = 2AH(Ax− y), (21)

which will be utilized in the implementation. The gradient of the data fidelity term
will be handled using proj(.) operator which is explained in more detail in [3].

In this setup, the test image is encoded into the phase component of the input
image, and the forward operator A is applied to generate the measurements y. This
setup was chosen because the problem is linear and convex, making the solution
relatively straightforward.
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3.3 Probe Parameters

The parameters of the probe objective are among the most critical values to opti-
mize. Various types of probes were tested during the research process, with several
properties of the probe being modified and refined at different stages of the research.

3.3.1 Probe Type

The probe shown in Figure 4 was used for the linear case. This probe was generated
using a sinc-based defocused pupil function with a circular geometry.

Figure 4: Probe function used with circular defocused pupil where (a) shows the amplitude
of the probe, (b) shows the phase of the probe, and (c) is the profile of the overlapped
probes in terms of different measurements taken.

The probe function has a circular shape, and while the overlay profile of the
probes shown in (c) is sufficient for capturing the necessary information between
the cross-sectional areas of the diffraction pattern, it caused problems during the
initial trials of the nonlinear case. Due to the limitations of discrete sampling, a
perfect representation of the continuous circular probe cannot be achieved. Since
the image is initially discretized and fed into the forward process, the discretiza-
tion introduces artifacts resembling a "staircase" pattern along the circumference
of the circular probe. These artifacts, which become more prominent at the coars-
est scale, significantly affect the optimization procedure by introducing inaccuracies
that hinder the reconstruction quality.

Figure 5: The square probe function is displayed, where (a) shows the amplitude of the
probe, (b) illustrates the intersection ratio of two neighboring diffraction patterns, and (c)
presents the profile of the overlapped probes based on different measurements taken.
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To tackle this problem a square shaped probe with constant phase is decided
to be used, shown in Figure 5. Since discrete sampling of the square probe also
resembles a perfect square probe it considered to

3.3.2 Intersection Ratio of the Probes Between Measurements

The ptychography problem, as defined in Section 2.1, involves a phase retrieval
process that must be addressed. In the typical case, the phases of different mea-
surements y1, y2, . . . , yM are captured as power measurements, resulting in the loss
of phase information for all measurements. Since a complete reconstruction requires
both magnitude and phase information, additional information must be implicitly
or explicitly provided to the system. In ptychography, the diffraction patterns of the
measurements generated on the detector plane contain overlap regions, as illustrated
in Figure 6a, which serve as a source of the necessary additional information [6].

(a) Overlap region of two probes of con-
secutive measurements, |y1|, |y2| and
|y1 + y2|

(b) The figure highlights how the com-
bination of measurements provide infor-
mation to resolve the relative phases of
components. The overlap region intro-
duces additional constraints from com-
bined measurements.

As can be seen, the information from the cross-sectional area can be utilized to
address the phase issue in the problem, aiding in the retrieval of the relative phase
with respect to the base measurement. To achieve this, it was decided that the
overlap ratio would be set to 75%, with each probe shifted by 1/4 of its length.
Consequently, the probe structure shown in Figure 7 was selected for the remainder
of the research.
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Figure 7: The square probe function is displayed, where (a) shows the amplitude of the
probe, (b) illustrates the intersection ratio of two neighboring diffraction patterns, and (c)
presents the profile of the overlapped probes based on different measurements taken.

3.4 Nonlinear Problem Setup

After verifying the algorithm’s integrity for the linear problem, the research shifted
focus to the nonlinear phase retrieval problem. The formulation of the nonlinear
problem is as follows:

x̂ = argmin
x∈RN×N

||y − |Ax|2||2 + λR(x), (22)

where y represents the observed power measurements, A is the forward operator
representing the ptychography process, and R(x̂) is the HTV regularizer weighted
by the parameter λ.

In this setup, the regularization parameter is non-differentiable, whereas the data
fidelity term is differentiable. The gradient of the data fidelity term is given by:

∇xLoss = 2AH
(
Ax ∗

(
|Ax|2 − y

))
, (23)

which will be utilized in the implementation. The gradient of the data fidelity term
will be handled using proj(.) operator which is explained in more detail in [3].

The introduction of the regularization term R(x̂) stabilizes the optimization by
promoting continuous piecewise linear (CPWL) solutions. However, the problem is
non-convex and challenging due to the loss of phase information, necessitating the
use of a multiresolution algorithm based on box splines.

As explained in Section 1, the multiresolution algorithm initializes the solution
at a coarser scale and incrementally refines it at finer scales, using the results from
previous scales to guide the optimization. This approach reduces the risk of lo-
cal minima and accelerates convergence, especially for high-dimensional, nonlinear
problems.

In the next section, the results of the linear problem and the nonlinear problem,
after applying the adjustments to the probe as described above, will be presented
and analyzed. The adjustments aim to improve the overall reconstruction quality
and algorithmic efficiency, particularly in addressing the artifacts caused by the
probe structure.
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4 Results

4.1 Linear Problem Results

The multiresolution algorithm was applied to solve the linear problem described
in Section 3.2. Examples of the resulting samples from this problem are shown in
Figure 8.

Figure 8: Magnitude (a) and phase (b) of the input (x) and the magnitude (c) and phase
(d) of an example measurement (y = Ax).

Running the multiresolution algorithm produced good reconstruction results,
as expected. These results are shown in Figure 9. The optimization successfully
converged under various settings, with different numbers of iterations for each scale
and varying learning rates. This is because the linear problem is convex, making
the solution relatively straightforward to achieve, whether using a classical gradient
descent approach or the multiresolution algorithm.
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Figure 9: Result of the optimization: the ground truth image is embedded to the ∠x shown
in (a), phase of the reconstruction ∠x̂ shown in (b), and finally the loss between the ground
truth and reconstruction.

4.2 Nonlinear Problem Results with CPWL Functions

For the nonlinear phase retrieval problem described in Section 3.4, the multireso-
lution algorithm was used to address the optimization challenges. Results of the
optimization with λ = 0 are shown in Figure 10.

Figure 10: Result of the optimization: the ground truth image is embedded to the ∠x
shown in (a), phase of the reconstruction ∠x̂ shown in (b), and finally the loss between
the ground truth and reconstruction.

To accelerate the algorithm, an adaptive learning rate strategy was implemented,
with two multipliers, αu and αd, used to dynamically adjust the learning rate based
on the loss function. The evolution of the loss and learning rate over iterations is
shown in Figure 11.
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Figure 11: Log-Loss (a) and step size (b) through iterations.
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The effect of HTV regularization was evaluated by varying the regularization
parameter λ over {10−3, 10−4, 10−5, 10−6, 10−7}. The reconstructed images and their
corresponding loss values are shown in Figure 12.

Figure 12: Ground truth (GT) images (a), reconstructed images (b), and corresponding
loss results (c) for λ = {10−3, 10−4, 10−5, 10−6, 10−7}.

The learning rate and loss curves for each value of λ are shown in Figures 13 and
14, respectively.
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Figure 13: Step size values for different values of regularization parameter λ.

Figure 14: Log-Loss values for different values of regularization parameter λ.

The results demonstrate that while HTV regularization stabilizes the solution by
enforcing CPWL behavior, excessive regularization introduces artifacts and reduces
detail fidelity. These findings highlight the need for careful parameter selection to
balance reconstruction accuracy and artifact suppression.

Comparing the results of the CPWL-based multiresolution algorithm with the
classical gradient descent (GD) approach provides valuable insights. The GD method
can be viewed as a special case of the multiresolution algorithm, where optimization
is restricted to the finest scale. Figure 15 illustrates the comparison of the loss values
between the two approaches over iterations.
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Figure 15: Log-Loss values of the optimization process over iterations for the CPWL-based
multiresolution and gradient descent algorithms.

The results indicate that the CPWL-based multiresolution algorithm offers a
more efficient optimization path, achieving faster convergence compared to the clas-
sical gradient descent approach.

4.3 Nonlinear Problem Results with CPC Functions

In the latter stages of the project, a bottleneck was identified in the implementa-
tion of the multiresolution algorithm. Until now, the code operated on all tensors
and images at the finest discrete scale, resulting in suboptimal algorithmic perfor-
mance. This inefficiency arises because the forward and backward operations do not
necessarily require computations to be performed at the finest scale throughout.

To address the computational challenges, operations at coarser scales were im-
plemented with reduced memory and tensor sizes, as described in the ptychography
forward operation (Section 2.1) and the corresponding discretization (Section 2.2.2).
This improvement significantly accelerates computationally expensive tasks, such as
the FFT in the forward pass and the IFFT in transpose operations.

Initially, CPWL (Continuous Piecewise Linear) basis functions were used to en-
able HTV regularization, as the implementation of Pourya et al. [3]. CPWL box
splines provide a robust framework for multiscale regularization. However, it was
observed that the initial ptychography implementation operates on a pixel-based
representation of images, which makes the multiscale relationships of CPWL func-
tions difficult to implement efficiently within this framework. This limitation led to
sub-optimal implementations and necessitated a reevaluation of the basis functions.

To simplify the implementation at this stage, CPWL basis functions were re-
placed with CPC (Continuous Piecewise Constant) functions, a different class of
box splines. While regularization was temporarily removed to simplify the imple-
mentation, it is planned to reintroduce a suitable regularization approach in future
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refinements. The derivation of the new implementation is provided in Section A,
and the updated forward operator is expressed in Equation 24:

Asζxsζ = 2−2ζDFT2ζ(xsζ)⊙ ϕ̂(2−ζ), (24)

where Asζxsζ represents the forward operation and input at scale sζ , and ϕ̂(2−ζ)
incorporates the coarser scale transformation.

The method processes images at respective coarser scales, applies spatial copies,
and uses fixed multipliers at each scale. This process is illustrated in Figure 16,
which includes the input x, the ground truth (GT) image embedded into the phase,
the result of |Ax|, the multiplier at a given scale, and the phase of ATAx.

Figure 16: Illustration of the forward operation and its components for various scales.

Verification of the forward operation was conducted through inner product equal-
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ity:
⟨Ax1, y2⟩ = ⟨x1, A

Hy2⟩. (25)

The optimization results using the proposed forward operator and scaling methods
are presented in Figure 17.

Figure 17: Illustration of the forward operation and its components for various scales with
symmetric multipliers.

The reconstructed image demonstrates high quality, validating the effectiveness
of the proposed approach as a reconstruction technique. Additionally, Figure 18
shows the loss values during optimization, revealing that more information was
extracted at coarser scales compared to the initial algorithm, thus improving the
optimization process.

Figure 18: Log-Loss values of the optimization process over iterations.
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It is also important to compare the results of utilizing the CPC-based multires-
olution algorithm with the classical gradient descent (GD) approach, which can be
considered a special case of the multiresolution algorithm where the optimization is
performed only at the finest scale. The comparison of the losses between the two
algorithms is shown in Figure 19.

Figure 19: Log-Loss values of the optimization process over iterations for the two opti-
mization algorithms.

The results demonstrate that the multiresolution algorithm achieves a better
optimization path, with an increased convergence speed compared to the classical
gradient descent approach.

5 Future Work
While the CPC-based method has shown promising results, certain challenges re-
main. By editing the multipliers such that the matrix becomes circularly symmet-
ric, better definitions for the linear operator and its corresponding transpose can be
achieved. This improvement addresses a potential issue arising from the implementa-
tion, which combines continuous-time Fourier transform (CTFT) and discrete-time
Fourier transform (DTFT) operations. The results obtained using these symmetric
multipliers are shown in Figures 20 and 21.
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Figure 20: Log-Loss values of the optimization process over iterations using symmetric
multipliers.

Figure 21: Reconstructed image using symmetric multipliers.
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Details of the implementation of the multipliers will be thoroughly investigated
as part of the future work of the project, and the mathematically correct implemen-
tation will be provided. Notably, the algorithm has yet to be fully optimized for time
efficiency due to technical issues such as memory management and the selection of
appropriate functions during coding. Future work could focus on developing more
robust strategies for handling large-scale computations to further reduce runtime and
memory footprint. Additionally, methods to integrate HTV regularization could be
explored while maintaining the simplicity of CPC functions. Direct comparisons
with the initial implementation are also needed to quantify improvements in time
efficiency and reconstruction quality. These directions offer promising avenues to
enhance the robustness, scalability, and efficiency of the proposed framework. Final
remarks and conclusions for the project are provided in the following chapter.

6 Conclusion
In this study, we presented a novel multiresolution framework for ptychographic
image reconstruction, leveraging the computational efficiency of box splines and
the hierarchical structure of multiresolution methods. By addressing the inherent
challenges of ptychography, including the non-convex nature of the optimization
problem and the high dimensionality of the data, the proposed approach demon-
strated significant promise in improving reconstruction accuracy and computational
performance. The results achieved through the implementation of the multireso-
lution algorithm highlight its potential in addressing the phase retrieval problem
effectively. By starting with coarse-scale representations and progressively incor-
porating finer details, the framework successfully balances computational efficiency
with reconstruction fidelity. However, certain limitations remain. The current im-
plementation has yet to fully optimize memory management and computational
resource utilization, particularly at the finer scales. Looking ahead, the framework
can be extended to incorporate additional regularization techniques tailored to CPC
functions and explore advanced optimization strategies to further accelerate conver-
gence. In conclusion, the proposed multiresolution approach provides a robust and
efficient solution to the challenges of ptychographic reconstruction, with the poten-
tial for significant impact in the fields of biological imaging, materials science, and
beyond. Continued advancements in this direction are expected to further broaden
the applicability and effectiveness of computational imaging techniques.
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A Efficient Forward Implementation

A.1 Forward Operator

p(x) := 1[−0.5,0.5]2(x), (A.1.1)

ϕ(x) := 1[0,1]2(x), (A.1.2)

ϕ̂(f) := sinc(f1) · sinc(f2) · e−jπ(f1+f2), (A.1.3)

|FDx|2 = F

p(2w · −k)
∑

n∈[0,2ζ−1]2

cn · ϕ(2ζ · −n)

∣∣∣∣
s

where s, k ∈ R2, (A.1.4)

ĉn = cn · p(2w · −k) for w > s, (A.1.5)
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|FDx|2 = F

 ∑
n∈[0,2ζ−1]2

ĉn · ϕ(2ζ · −n)

∣∣∣∣
s

=
∑

n∈[0,2ζ−1]2

ĉn · F(ϕ(2ζ · −n))

∣∣∣∣
s

(A.1.6)

=
∑

n∈[0,2ζ−1]2

ĉn · 2−2ζ · ϕ̂(2−ζs) · e−j2π⟨n,s⟩. (A.1.7)

∑
n∈[0,2ζ−1]2

ĉn · e−j2π⟨n,s⟩
∣∣∣∣
s=m

= DFT(ĉn)
∣∣
s

for m ∈ [0, 2ζ − 1]2, (A.1.8)

∑
n∈[0,2ζ−1]2

ĉn · 2−2ζ · ϕ̂(2−ζs) · e−j2π⟨n,s⟩
∣∣∣∣
s=m

= 2−2ζDFT2ζ(ĉn)⊙ ϕ̂(2−ζ), (A.1.9)
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